
IEEE Annals of the History of Computing, Vol. 19, No. 2, 1997 ∑ 17

Konrad Zuse’s Plankalkül: The First
High-Level, “non von Neumann”
Programming Language
WOLFGANG K. GILOI

Konrad Zuse was the first person in history to build a working digital com-
puter, a fact that is still not generally acknowledged. Even less known is that
in the years 1943–1945, Zuse developed a high-level programming model
and, based on it, an algorithmic programming language called Plankalkül
(plan calculus). The Plankalkül features binary data structure types, thus
supporting a loop-free programming style for logical or relational problems.
As a language for numerical applications, the Plankalkül already had the es-
sential features of a “von Neumann language,” though at the level of an op-
erator language. Consequently, the Plankalkül is in some aspects equivalent
and in others more powerful than the von Neumann programming model that
came to dominate programming for a long time. To find language concepts
similar to those of the Plankalkül, one has to look at “non von Neumann lan-
guages” such as APL or the relational algebra. This paper conveys the syn-
tactic and semantic flavor of the Plankalkül, without intending to present all
its syntactic idiosyncrasies. Rather, it tries to point out that the Plankalkül
was not only the first high-level programming language but in some aspects
conceptually ahead of the high-level languages that evolved a decade later.

To Konrad Zuse In Memoriam

Introduction
e know Konrad Zuse (Fig. 1) as an engineer who started
developing program-controlled binary calculators from

1936 onward and completed the first fully operational digital
computer in 1941. Zuse received the inspiration to use the binary
number system from the Dyadik of G.W. Leibniz (1646–1716),
realizing that the functions his binary machines had to perform
could be described by logical expressions. This triggered in him a
strong interest not only in propositional calculus but in mathe-
matical logic in general.1

Through Brian Randell’s book,2 an English translation of
Zuse’s first patent application of 1936 has become more widely
known, proving that Zuse had already developed many of the
major concepts of the digital computer years before John von
Neumann, Arthur Burks, and Herman Goldstine wrote their fa-
mous report Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument.3 However, Zuse’s vision of
digital machines and their potential capabilities went beyond the
purely sequential computer that is known to this day under the
name “von Neumann machine.” For example, the possibility of
array processing and even of parallel processing is already men-

tioned in his patent application of 1936.2

His first machine, called the Z1, was a mechanical digital
computer. It was the size of a pool table and featured mechanical
binary logic and flip–flop memory. Its arithmetic unit worked
with a “semilogarithmic” or floating-point number representation
that Zuse invented. The original Z1 did not survive the World War
II air raids on Berlin. By initiative of the German National Re-
search Center for Information Technology (GMD) and with con-
tributions from the industry, two students and a mechanic under
Zuse’s supervision built a replica in 1988–1989 using his original
documentation. The replica was installed at the Museum of Tech-
nology in Berlin in 1989. It proves that the civil engineer Zuse
was, among his other talents, an ingenious designer of mechanical
hardware.

Zuse began building the Z1 in 1936 and completed it in 1938.
The mechanical arithmetic logic unit of the Z1 had some problems:
Under certain conditions, it would get jammed and had to be reset
(the replica emulates—unintentionally—even that feature). In 1938,
while he was having a hard time making his mechanical design
work, he started designing a second machine, the Z2. The arithmetic
logic unit of the Z2 employed telephone relays instead of mechani-
cal switches, while the memory still consisted of mechanical flip–
flops. Its successor, the Z3 (1939–1941), was completely a relay

1058-6180/97/$10.00 ” 1997 IEEE

W

This paper is the revised version of a laudation rendered by the author
at the celebration of Zuse’s 80th birthday at his alma mater, the Technical
University of Berlin.

Konrad Zuse’s Plankalkül

18 ∑ IEEE Annals of the History of Computing, Vol. 19, No. 2, 1997

machine; it was the first fully operational programmable digital
computer in history. Immediately after its completion, Zuse started
the design of an upgraded version, the Z4. He had the good luck that
toward the end of World War II, both he and the Z4 were evacuated
to a safe place in Bavaria, before the Russian army entered Berlin.
In 1951, Zuse leased the Z4 to the Technical University of Zurich,
where it was in operation until 1953.

Fig. 1. Konrad Zuse (1910–1995).

Earlier, Zuse’s work on digital computers had been temporarily
interrupted by the outbreak of World War II, when he was drafted
into the German army. Later, he was exempted from military
service in order to work for an aircraft company. There he de-
signed the special-purpose computers S1 and S2, both relay ma-
chines that were used to compute wing corrections needed to
make the unmanned airplane HS293, a form of guided “buzz
bomb” that today would be called a “cruise missile,” fly. The S2
featured an integrated analog-to-digital conversion under program
control, which makes it the world’s first process control computer.
Zuse received the prestigious IEEE Computer Pioneer Award for
that achievement but, ironically, not for having built the first op-
erational general-purpose digital computer. However, at the time,
Zuse’s computers were not considered important for the German
war effort. Consequently, he got hardly any governmental support
for their development, which forced him to build them in his spare
time and with scrap material.

In the first postwar years, when the situation in Germany made
it impossible for Zuse to continue building digital computers, his
restless spirit found some ersatz occupation in the development of
a high-level “programming schema” (today we would call it a
programming model and language) for his digital computers. This
work resulted in a programming language called Plankalkül (plan
calculus). The concepts of the Plankalkül, for which there was no
precedent whatsoever, evolved in the second half of the 1940s,
and Zuse laid down those concepts in a monograph in 1945. His
work on the Plankalkül was also meant to become a PhD thesis.

Zuse wrote the thesis in 1944 but had no chance to submit it in the
chaotic last days of the Third Reich. Not until three decades later
was an English translation of it provided by the GMD in 1976 and
published as a GMD report—alas, in rather poor English.4 How-
ever, I doubt that many people ever read this publication, and
even fewer people may have studied Zuse’s concepts in detail,
since GMD reports are not well-known outside Germany. A re-
markable exception is D.E. Knuth and Trapp Pardo’s paper,5

which compares about 20 early programming language concepts
that evolved before 1957. An exemplary algorithm, called TPK, is
used to demonstrate the flavor of the different languages. The first
language demonstrated and discussed in detail in that paper is the
Plankalkül.

In the present paper, I shall first present the basic concepts of
the Plankalkül. I will try to show that the programming paradigms
found in it took a route somewhat different from the von Neu-
mann programming model that evolved in the 1950s as the
“canonical form” of computing and has maintained a dominating
position to this day. To this end, I have to define the basic charac-
teristics of a von Neumann language. I will try to explain why
Zuse’s Plankalkül had no impact on the development of von
Neumann languages such as Algol-60 and its successors. I will
also show that the Plankalkül anticipates notions and features of
later “non von Neumann languages.”

The Plankalkül
Basic Concepts
With the Plankalkül, Zuse wanted to provide a formal schema, or
“calculus,” for the construction of “computing plans” or, as the
world has come to call them, “programs.” Thus the name
Plankalkül—a short expression in German for “calculus for com-
puting plans.” Zuse’s aim was, in his own words, “to provide a
purely formal description for any computational procedure.”

Zuse writes about his motivations:

I was not concerned with programs for numerical calcula-
tions when I developed the PK [Plankalkül]. I did not ex-
pect any difficulties in this field then, and consequently I
concentrated my efforts mainly on the logical problems be-
yond the common numerical calculations.4

Consequently, the Plankalkül was designed for treating combi-
natorial problems as much as for formulating numerical algo-
rithms. For Zuse, the archetype of a combinatorial problem was
the chess game—Zuse’s monograph devotes a 44-page chapter to
programming chess games. From the beginning, he had the vision
that his machines would eventually be able to play chess better
than humans.

Let me start by listing some major concepts of the Plankalkül.

Explicitly Defined Binary Representations
All object types have binary representations that the programmer
explicitly defines. This seems to be rather low level, yet it has the
advantage that the user can efficiently program sophisticated non-
numerical operations in the form of Boolean expressions, for ex-
ample, in chess playing.

Scalar Types and Data Structure Types
The Plankalkül features the scalar types common in all von Neu-
mann languages. In addition, it comprises a variety of data struc-

IEEE Annals of the History of Computing, Vol. 19, No. 2, 1997 ∑ 19

ture types. Because of the visible binary representation of data
objects, all variable types including scalars are data structures
composed of Boolean elements. Therefore, all variables—scalars
as well as data structures—are denoted as structure. Conse-
quently, for every variable, a structure specification must be pro-
vided that defines implicitly the variable type, e.g., scalar, pair,
list, or array.

Variables
The Plankalkül distinguishes input variables, intermediate vari-
ables, and output variables. Variable names consist of a letter and
an integer number. The letter denotes the use of the variable: V
stands for an input variable, Z for an intermediate variable, and R
for an output variable. Constants are denoted by C. An attached
index number identifies the individual variable. A variable is
called by value. Its scope is the program in which it is declared.

Program and Program Equations
A program consists of a sequence of program equations. A pro-
gram has a name under which it can be invoked. Programs and
program equations have input and output variables. Internally,
program inputs are inputs to program equations, and some of the
program equation outputs will be the program outputs. An inter-
mediate variable is used if the result of a program equation is not
a program output but merely passed as input to a following pro-
gram equation.

Semantically, a program equation plays the role of the func-
tion-type subroutine of the later high-level languages. Typically, a
program equation executes a single Boolean or numerical expres-
sion with the inputs as arguments, assigning the result to one or
several output variables or intermediate variables. A program
equation may be composed of subequations.

Syntax
The syntax of the Plankalkül differs significantly from that of the
later high-level languages. Every program equation consists of
three or more lines. Only the first line has the familiar form of a
statement, consisting (from left to right) of an expression con-
taining input variables, the assignment symbol (⇒), and the
name(s) of the output (result) variable(s). In this first line, vari-
ables are represented only by their use designator, V, Z, or R—a
somewhat redundant feature, as the distinction between input or
output parameters is already made by their position left or right of
the assignment symbol.

The second line (V line) lists the identifiers (indices) of the in-
dividual variables. The V line may or may not be followed by a K
line in which specific components of the (structured) variables are
denoted by their index. Components may themselves be com-
posed. In this case, subcomponents are denoted by subindexing,
expressed by a dot notation. The last line (S line) declares the
variable structure by a structure notation. For example, the struc-
ture notation 1.n means that the variable is a scalar (has one ele-
ment) represented by a bit vector of length n. If a variable is al-
ready declared in a preceding program equation, of course, the
structure specification need not be repeated. Structure specifica-
tions may be dynamic. This is expressed by the symbols σ and τ,
which both denote an unspecified structure that will be dynami-
cally defined during execution.

For example, a variable V0 may be a bit vector with 32 bits or,

in Zuse’s notation, a structure of the type S1.n with n = 32, and if
an operation is to be performed on the second least significant bit
(bit 30), this would be indicated by writing

V
K
S

0
30
1 32.

As an illustration, we present a program equation, E1.1, for the
addition of two numbers, R0 = V0 + V1, and another equation,
E1.2, for incrementing a counter variable Z (taken from Zuse’s
own work,4, p.158).

E E

V
S

V V R

n n n
V

Z Z

11 1 2

0 1 0
1 1 1

1
2 2

. .

. . .

+ fi + fi

The syntax of the Plankalkül differs
significantly from that of the later high-

level languages.

As mentioned earlier, a program equation may invoke other pro-
grams or program equations as a subprogram, with any depth of
nesting allowed. To call a program as a subprogram, its result vari-
able R, indexed by its identifier, is referenced, followed by the vari-
able(s), set in parentheses, of the calling equation with which the
subprogram is to be executed. The scope of the subprogram vari-
ables is that of the calling program. For example, to call program
P4.1 with result R as subprogram of equation E1.3, one writes4:

E

V
S

R Z Z

n n

1 3

4 1
0 0 1

1 1

.

.

. .

a f fi

If a program is solely used as a subprogram, this may be indi-
cated by adding the letter Z to its name (in the example above,
one would write PZ instead of P and RZ instead of R).

Structure Specification
I mentioned above that for any variable of any type, a structure
specification must be given that specifies the binary representa-
tion of the variable, thereby implying its type. Fig. 2 gives exam-
ples of structure specifications.

Control Constructs
Zuse’s early machines did not have a branch instruction. Conse-
quently, the Plankalkül does not have a GOTO statement. Zuse
states in Comment of the Plankalkül written 25 years later:

I had in mind to introduce [a] method of program control into
the basic syntax of the PK [that] would have corresponded to
the GOTO statement and the use of program labels. But I
hesitated to take this step since, at that time, I did not have a
satisfactory overview of the possible consequences.4

There are two control constructs available in the Plankalkül:
one for the conditional execution of a program equation and the

Konrad Zuse’s Plankalkül

20 ∑ IEEE Annals of the History of Computing, Vol. 19, No. 2, 1997

other for the repetitive execution of a program. The conditional
execution corresponds to the IF statement of later languages.

The FIN and FIN2 constructs allow program executions to be
terminated or iterated, respectively, when a given condition be-
comes true. This is mechanized by assigning a Boolean value to
FIN or FIN2, respectively. FIN provides an exit from a program
that may be used when further execution becomes unnecessary.
(Note: APL has such a mechanism, too. I refrain here from elabo-
rating on the potential danger of uncontrolled program exits.)
FIN2 leads to the renewed execution of the program rather than
terminating it. As an example of a possible use of FIN, Zuse con-
siders the disjunctive connection of three Boolean variables,
which can be terminated as soon as one of the three operands
becomes true.

V V V R⁄ ⁄ fi
0 1 2 0

V Z Zfi fi
0 0 0

FIN

Z V Z Z⁄ fi fi
0 1 0

FIN

Z V R⁄ fi
0 2 0

The FIN2 construct causes program execution to begin anew.
This may be repeated until another statement with the simple FIN
terminates the repetition. Thus, by the combination of FIN and
FIN2 with program equations that compute jump conditions, pro-
grams may execute repeatedly in the REPEAT ... UNTIL fashion.
As the Plankalkül allows for all variants of incrementing or dec-
rementing iteration counters, one can also program FOR-type
loops—an example of this can be found in Zuse.5 In the iterative
execution of programs, the (varying) argument values with which
the repetitions are carried out are obtained through indexing.
Since variable identifiers in the Plankalkül are always index num-
bers, all that needs to be done is to use index parameters com-
puted inside the program.

Scalar Data Types
The Plankalkül comprises a large variety of standard data types,
yet it also allows the declaration of user-defined types. There
exist, for example, the following predefined scalar types:

• complex numbers
• real numbers
• integer numbers
• nonnegative integers
• negative integers
• rational numbers
• nonnegative rational numbers
• binary numbers

Recall that in the Plankalkül the only primitive scalar type is
the single bit. Integer numbers, for instance, are bit vectors and,
thus, already structures.

Standard types have fixed symbolic denotators. The denotation
can be refined in order to specify idiosyncrasies of the binary

representation. For example, one can distinguish between an inte-
ger representation by absolute value and sign or by two’s com-
plement. A variety of arithmetic functions are defined on the nu-
merical standard types, corresponding with what can be found in
any better high-level programming language, including its
mathematical function library.

Fig. 2. Examples of structure specifications.

User-defined types can be anything the user wants. Zuse4 il-
lustrates this by the example:

• persons
• age
• gender
• marital status
• other data pertaining to a person.

Another set of Zuse’s examples is:

• the fields of a chessboard
• the pieces of the chess game, including a definition of the

way they are allowed to move
• the edges of a graph or
• whatever else the application may demand.

The price the programmer has to pay for the ability to define
arbitrary types is that for each type introduced, not only its defini-
tion but also its binary representation must be specified. The bi-
nary representation is always a bit string; its interpretation is de-
termined by the specification the user provides as part of the type
definition.

All operations of user-defined types are operations on the bi-
nary representation, that is, expressions of proposition calculus or
predicate logic. This allows the programmer to define subsets of
the set of elements of a type according to propositions of predi-
cate calculus as illustrated by the simple example shown in Fig. 3.

Data Structure Types
I mentioned above that a data structure type of the Plankalkül
consists of a set of scalar values plus a binary pattern specifying
their structuring.

All data structure types have as a basis the binary tree whose
nodes are readily addressed by a bit string. Other structures, e.g.,
lists and arrays, must be mapped onto binary trees. Consequently,
the user sees, in the case of an array, the tree that represents it.
This is the price to pay for the generality of constructing arbitrary
data structures in the form of trees.

IEEE Annals of the History of Computing, Vol. 19, No. 2, 1997 ∑ 21

Lists and lists of pairs are the most important structures in the
Plankalkül. The latter allow the representation of generalized
graphs, that is, arbitrary relations.6 A relation is defined by listing
all its pairs. This approach is appropriate, e.g., for representing
geometric structures. Zuse4 treats various examples of graph theo-
retical problems.

The elements of a data structure may be of any given type. For
example, element types may be:

• binary values
• integer numbers
• real numbers
• lists
• lists of pairs
• vectors

Higher dimensional arrays, e.g., matrices, may be defined as
vectors of vectors etc. As in APL, structures can be dynamically
created by the execution of appropriate program equations, in the
Plankalkül called “structure equations.”

Fig. 3. Example of a user-defined data structure.

Lists are dynamic, i.e., may grow and shrink. An empty vari-
able symbol is provided to be used as a placeholder for dynami-
cally created elements. List operations exist for the following:

• creating a sublist containing all elements that satisfy a given
predicate

• obtaining the number of elements of a list
• obtaining the next element
• obtaining the first or last element
• obtaining the smallest or largest element
• adding an element to the head or tail of a list
• concatenating two lists.

Hence, the type list is a true data structure type that encom-
passes a number of functions applicable to list objects. Arrays,
on the other hand, exist only in the rudimentary form as found
in the later high-level languages. One can construct arrays, but
the only function defined in them is indexing, allowing for the
selection of array elements. Zuse had planned to add genuine
array types, e.g., matrices with matrix operations, but postponed
it in favor of the more intricate relational structures he needed
for his chess programs. He considered the addition of array
types as trivial.

Plankalkül and the Evolution of
High-Level Languages
Intention of the Plankalkül
It is fair to assume that the development of the Plankalkül was
strongly influenced by Zuse’s experience with his early ma-
chines, Z1 through Z3, which neither supported program loops
nor had a stack. Thus, they were not “von Neumann machines”
in the above definition. The Z4 was Zuse’s first machine that
had branch instructions.

Zuse emphasized, on many occasions, that from the beginning,
he had very clearly seen the possibility of storing not only data
but also instructions in the memory of his computer, that is, exe-
cute programs out of store. However, in his early designs, he con-
sidered memory—the most expensive part of the machine—too
precious to be “wasted” on storing code rather than data. Conse-
quently, programs were stored in a separate read-only memory
realized in the form of punched celluloid film (he obtained this as
scrap from movie studios). This decision implied a loop-free,
functionally oriented programming style. He mechanized this in
the Plankalkül in the form of an operator language.

He considered memory ... too precious
to be “wasted” on storing code

rather than data.

Of course, when Zuse developed the Plankalkül, he had al-
ready come to realize that many important algorithms were itera-
tive by nature. This motivated him to provide a mechanism that
allowed the programmer to embed sequences of program equa-
tions in a program or subprogram that could be repeatedly exe-
cuted. APL, although much richer in types (n-dimensional arrays
and operations of linear algebra), is based on the same concept.

Zuse was often asked what motivated him in 1936 to start de-
veloping computing automatons. His standard response—which
always earned him some laughs—was “laziness.” He then used to
point out that, as a civil engineer, he had to do tedious and boring
numerical computations, which made him want a machine to do
them for him. This representation earned him points with journal-
ists, but it is at best only partly true. Though he considered nu-
merical computations to become the “bread-and-butter” applica-
tions of his machines, his heart was in their use for solving so-
phisticated logical problems—the epitome being chess playing.
Had his focus in 1945 been on numerical problems, e.g., solving
systems of linear equations (which he had to do all the time when
working in the aircraft industry), he would probably have come
up with a language centered on array operations. Instead, he de-

Konrad Zuse’s Plankalkül

22 ∑ IEEE Annals of the History of Computing, Vol. 19, No. 2, 1997

vised a language providing the expressive means to formulate
problems of propositional calculus, predicate calculus, and set
theory in a procedural manner.

To demonstrate the kind of applications—besides chess play-
ing—Zuse had in mind when he designed the Plankalkül, consider
a simple example of list processing. Given a unidirectional graph,
the task is to write a subprogram that yields the number of edges
leaving a given node. As in other programming languages, there
exist two approaches to graph representation4:

1) for a graph with N nodes, construct a Boolean N ¥ N matrix
and mark each edge with a “1”

2) generate the list of relation pairs (the source and destination
node of an edge).

Since the Plankalkül comprises the data type list of pairs as well
as a variety of list operations, the second approach is quite
straightforward.

The subprogram, let it be called U5.1, is of the general form:
R V V R0 1 0, .c h fi , where V0 denotes the list of pairs, V1 a single

pair, and V1 0. the first element of that pair. The operation to be
performed is to count the number of pairs in V0 in which V1 0.
occurs as the first element. In the Plankalkül, this is readily per-
formed by using the THOSE WHICH operator4 and the operator
N(L), which yields the number of elements in a list L.4 The
THOSE WHICH operator, $x , has the form: $xR V Ru 0c h fi ,

yielding as a result the list of elements of V0 for which the predi-
cate Ru is true. This leads to the following program that can be
read almost like a mathematical formula:

U

V
K
S

R V V R

m n

V
K
S

N x v V v V

m

R

n

5 1

0 1 0
0

2 1

0 1
0

2 2
0

1

.

()

.

$

.

fi

¥

Œ Ÿ =

¥

L

N

MMM

O

Q

PPP

L

N

MMM

O

Q

PPP

fi

s s

s s s s

Lack of Impact of the Plankalkül
Zuse and other authors7 see the Plankalkül as a forerunner of al-
gorithmic programming languages such as Fortran and Algol.
This view is based on some major characteristics the Plankalkül
has in common with those languages:

• the notion of variables, including variable declaration and
assignment

• the notion of subroutines of the function type
• the conditional or repetitive execution of subprograms or

programs

It is not surprising that, in the early years of high-level lan-
guage development, the Plankalkül had so little impact for the
simple reason that it was hardly known. However, Zuse more than
once expressed his disappointment that the Plankalkül had so
little, if any, impact on the later development of programming
languages and that his priority in the invention of the above con-
cepts was not duly acknowledged.

Because of the forced exodus of its elite of artists and scientists
during the Third Reich, Germany lost its traditional role as a
leader in science and as a place that would attract foreign scien-
tists. Consequently, the German language had ceased to be a ma-
jor science language. The postwar conditions in Germany hin-
dered the spread of scientific publications for years. Therefore,
Zuse’s monograph on the Plankalkül was hardly known in Ger-
many, let alone outside the country. It took three decades for the
report4 to be published in English. The same report contains the
draft of the PhD thesis Zuse wrote in 1944 but did not have a
chance to submit to a university.

In an addendum to the monograph written in 1972, Zuse ex-
pressed his disappointment that even his German colleagues in-
volved in the development of Algol did not give him due credit
for the programming concepts proposed in the Plankalkül, al-
though they knew about it.4

I deem it questionable that the creators of Algol were inten-
tionally denying Zuse the credit he deserved as the inventor of
important programming concepts; rather, I give them the benefit
of the doubt that this came from a lack of understanding. What
the creators of Algol wanted to, and did, accomplish was to
raise programming to a higher level of abstraction. They may
have viewed the explicit manipulation of binary structures as
the basis of all operations in the Plankalkül, whose rationale
they may not have appreciated, as unnecessarily low level. Al-
though they must have recognized the semantic similarities
between the Plankalkül and some concepts of their language,
the crudeness (in their view) of the former as an unstructured
operator language without safe mechanisms for data encapsula-
tion and scope control may have led them to discard it as too
exotic and low level to be credited as a forerunner of what they
considered a good high-level algorithmic programming lan-
guage, the more so as for them “algorithmic” meant primarily
numerical operations.

To back this conjecture, note Zuse’s intentions with the
Plankalkül. I will try to show that the Plankalkül intentionally
presented a “non von Neumann” model of computing, similar to
what a decade later Kenneth E. Iverson had in mind with the
creation of APL.8 To this end, I first must define the term “von
Neumann language.” It will then become obvious why the pro-
tagonists of the later “von Neumann type” programming lan-
guages had little appreciation for Zuse’s endeavors, as little as
they had for the APL concepts.9

More than a decade after the Plankalkül was conceived,
Zuse built a computer company that, in the late 1950s and
early 1960s, became the main supplier of German universities
with an affordable electronic digital computer, the Z22. Origi-
nally, the drum machine Z22 had to be programmed at the
machine level (this author belongs to the generation who
originally learned digital programming on a Z22, i.e., the hard
way). Zuse4 writes that at that time he considered implement-
ing the Plankalkül on his computers, however, he came to re-
alize that this would overtax the financial resources of his
company. At a time (around 1959) when compilers were still
practically unknown and the only programming facility for the
Z22 was some kind of assembler language called “Freiburger
Code,” the Plankalkül would have made a sensational high-
level programming system.

IEEE Annals of the History of Computing, Vol. 19, No. 2, 1997 ∑ 23

Plankalkül and “von Neumann Languages”
A programming language is the realization of a certain program-
ming model that, in turn, may be defined by the properties of an
abstract machine. Languages of the Algol type have as their un-
derlying abstract machine the “von Neumann machine,” given in
the specific form of a stack machine. This leads to the following
characteristics of a von Neumann language:

• The data objects of the language are strictly scalar memory
objects; there exist no true data structure types. Variable
names are symbolic addresses of memory objects, to the
extent that there exists the explicit type “memory address”
(pointer).

• A computation consists of the step-wise (sequential) trans-
formation of the states of memory objects. Consequently,
the language offers only scalar operations.

• There may be procedures (program blocks) nested to any
arbitrary depth.

Array declarations serve the purpose of having the compiler re-
serve a contiguous memory space for the storage of a homogene-
ous, ordered set of scalar data; consequently, the elements of the
set can be accessed through computed addresses (indices). Be-
sides indexing, there exist no array operations such as inner or
outer products etc. The lack of array operations or other data
structure types is reflected in the application program by the oc-
currence of loops in which the scalar array elements are trans-
formed one at a time.

It was not before the mid-1970s that even the Algol school fi-
nally came to realize that the lack of comprehensive data structure
types is a disadvantage.10 This shortcoming weighs particularly
severely under the aspect of parallel processing, for which von
Neumann languages offer no expressive means. To execute a “von
Neumann program” in parallel, it must first be “parallelized.” At
the present state-of-the-art, the programmer is burdened with this
task. In the future, with the development of parallel programming
languages such as High Performance Fortran11 and others, this
task will be supported by or even totally automatically performed
by the compiler.12

The above characterization of a von Neumann language imme-
diately reveals a significant difference from the Plankalkül, as the
latter features the notion of data structure types, thus favoring a
largely loop-free programming style.

Plankalkül and “non von Neumann Languages”
Well-known examples for programming languages that deviate
significantly from the von Neumann model are APL, Lisp, and
SETL. As mentioned above, APL is based on multidimensional
dynamic arrays. Lisp has dynamic list structures, built with the
CDR-CON mechanism as its primary data type. SETL is based on
sets in the set-theoretical definition; consequently, its functions
include set operations such as union, intersection, etc.

The development of APL was undertaken with the declared
goal of creating a new, more powerful algebra.8 To this end, Iver-
son combined the operations of linear algebra with the procedural
concept of state (a concept alien to mathematical algebra). The
powerful array operations of APL allow for a loop-free program-
ming of algorithms that in a von Neumann language must be exe-
cuted iteratively. Therefore, the APL types provide an appropriate

basis for parallel programming and, consequently, can be found in
Fortran90, the modern version of a data-parallel Fortran.

Zuse’s Plankalkül, with its emphasis on logical and relational
operations, comes closer in intent to a set-oriented language such
as SETL (albeit on a lower level of abstraction). The relationship
of the Plankalkül with Lisp, on the other hand, is superficial.
Though both languages comprise the data type list, the represen-
tation of list structures and their intended use in the Plankalkül is
rather different from that of Lisp.

Conclusion
I hope to have shown that with the development of the Plankalkül
in 1943–1945, Zuse took a broader view of computing than, a
decade later, John Backus with Fortran or Bauer and Naur with
Algol-60. In motivation and aims, Zuse’s Plankalkül came much
closer to Iverson’s APL or Ted Codd’s concepts of a relational
algebra.

For the development of computer science, it certainly was a
loss that under the given circumstances, the Plankalkül remained
practically unknown. Had Zuse’s monograph become as widely
known as the report of Burks et al.,3 some developments such as
the relational data base, logical programming,13 or the creation of
standardized forms of knowledge representation in artificial intel-
ligence might have evolved sooner.

Acknowledgments
The author is greatly indebted to Stefan Jaehnichen, J.A.N. Lee,
Niklaus Wirth, Michael Williams, and the reviewers for very
valuable discussions and suggestions.

References
[1] K. Zuse, Der Computer—Mein Lebenswerk. Munich: Verlag Mod-

erne Industrie, 1970.
[2] B. Randell, ed., The Origins of Digital Computers. Berlin-

Heidelberg-New York: Springer-Verlag, 1973.
[3] A.W. Burks, H.H. Goldstine, and J. von Neumann, “Preliminary

Discussion of the Logical Design of an Electronic Computing In-
strument,” A.H. Taub, ed., Collected Works of John von Neumann,
vol. 5. New York: Macmillan, 1963, pp. 34-79.

[4] K. Zuse, The Plankalkül, GMD Report no. 175, 2nd ed. Munich-
Vienna: R. Oldenbourg-Verlag, 1989.

[5] D.E. Knuth and T.L. Pardo, “The Early Development of Program-
ming Languages,” N. Metropolis, J. Howlett, and G.-C. Rota, eds., A
History of Computing in the Twentieth Century. New York: Aca-
demic Press, 1980, pp. 197-208.

[6] D.E. Knuth, The Art of Computer Programming, vol. 1. Reading,
Mass.: Addison-Wesley, 1975, 2nd ed.

[7] F.L. Bauer and H. Wössner, “The Plankalkül of Konrad Zuse, a
Forerunner of Today’s Programming Languages,” Elektronische
Rechenanlagen, 1972, H.2.

[8] K.E. Iverson, A Programming Language. New York: J. Wiley &
Sons, 1962.

[9] W.W. Dijkstra, “The Humble Programmer,” Comm. ACM, vol. 15,
no. 10, pp. 859-866, 1972.

[10] E.W. Dijkstra, A Discipline of Programming. Englewood Cliffs,
N.J.: Prentice-Hall, 1976.

[11] “High Performance Forum: High Performance Fortran Language
Specification,” Scientific Programming, vol. 2, pp. 1-170, 1993.

[12] W.K. Giloi, M. Kessler, and A. Schramm, “PROMOTER: A High-
Level, Object-Parallel Programming Language,” Sahni, Prasanna,
and Bhatkar, eds., Proc. Int’l Conf. High Performance Computing.
New Delhi: McGraw-Hill, 1995, pp. 661-666.

[13] R. Kowalski, “Predicate Logic as Programming Language,” Proc.
IFIP Congress, 1974.

Konrad Zuse’s Plankalkül

24 ∑ IEEE Annals of the History of Computing, Vol. 19, No. 2, 1997

Wolfgang K. Giloi received his Diploma
(1957) and PhD (1960) in electrical engi-
neering from the University of Stuttgart.
From 1960 to 1964, he was development
engineer at AEG-Telefunken and general
manager of its Analog/Hybrid Computer
Department. From 1965 to 1970, he was a
professor of electrical engineering at the
Technical University of Berlin and depart-

ment director at the Heinrich-Hertz-Institute (1966 to 1973). From
1968 to 1969, he a visiting professor at MIT. From 1971 to 1977,
he was a professor of computer science at the University of Min-
nesota. Since 1978 he has been a professor of computer science at
the Technical University of Berlin and (since 1983) director of the
Research Institute for Computer Architecture and Software Tech-
nology of the German National Research Center for Information
Technology. He was appointed as an adjunct professor of com-
puter science at UCLA (1988), honorary professor at Shanghai
Jiao Tong University (1990), and member of the Academy of
Science of Berlin-Brandenburg (1994). Dr. Giloi is the architect of
two of the world’s most powerful massively parallel computers,
Suprenum (completed 1989) and Manna (1993). He was awarded
the Ring of Honor of the German Society of Professional Engi-
neers (VDI), the IFIP Silver Core, and the Cross of Merit First
Class of the Federal Republic of Germany. Since 1991, he has
been an IEEE Fellow and has served since 1992 on the Board of
Governors of the IEEE Computer Society. From the 1960s on-
ward, he had enjoyed a close personal relationship with Konrad
Zuse.

The author can be contacted at
GMD Research Institute for Computer Architecture and
Software Technology
Rudower Chaussee 5
12489 Berlin, Germany
e-mail: w.giloi@computer.org

